The Comparison of Iris Recognition using Principal Component Analysis, Log Gabor and Gabor Wavelets

نویسندگان

  • Pravin S. Patil
  • S. R. Kolhe
  • R. V. Patil
  • P. M. Patil
چکیده

With an ever growing emphasis on security systems, automated personal identification based on biometrics has been getting extensive focus in both research and practical over the last decade. The methods for iris recognition mainly focus on feature representation and matching. As we known traditional iris recognition method is using Gabor Wavelet features, the iris recognition is performed by a 256 byte iris code, which is computed by applying Gabor wavelets to a given portion of iris. Log Gabor wavelet based features are invariant to changes in brightness and illumination whereas techniques like principal component analysis can produce spatially global features. The goal of this paper is to compare feature extraction algorithm based on PCA, Log Gabor Wavelet and Gabor Wavelet. We use these methods to generate feature vectors that could represent iris efficiently. Conclusions based on comparisons can provide useful information for further research. Performance of these algorithms is analyzed using CASIA database. General Terms Security, Biometrics, Iris Recognition

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iris Recognition Using Gabor

The iris recognition is a kind of the biometrics technologies based on the physiological characteristics of human body, compared with the feature recognition based on the fingerprint, palm-print, face and sound etc, the iris has some advantages such as uniqueness, stability, high recognition rate, and non-infringing etc. iris patterns have now been tested in many field and laboratory trials, pr...

متن کامل

Advanced Security System using RFID and IRIS Recognition System using ICA, PCA, Daugman’s Rubber Sheet Model Together

Iris recognition is the mean of biometric identification using very large amount of iris database taken without contact to the human body. Basically three main methods are available to process iris data, out of which in this paper, an iris image synthesis method based on Principal Component Analysis (PCA), Independent component analysis (ICA) and Daugman’s rubber sheet model& hybrid model is pr...

متن کامل

Face Recognition using Gabor Wavelet and a Comparison with Gaussian PCA

The selection of appropriate wavelets is an important target for any application. In this paper Face recognition has been performed using Principal component analysis (PCA), Gaussian based PCA and Gabor based PCA. PCA extracts the relevant information from complex data sets and provides a solution to reduce dimensionality. PCA is based on Euclidean distance calculation which is minimized by app...

متن کامل

The Elimination Eyelash Iris Recognition Based on Local Median Frequency Gabor Filters

The orientation of iris texture will influence the iris recognition rate and the 2 dimensional Gabor filters (2-D Gabor) has better selectivity in orientation and frequency, so the multi-scales and multi directions 2-D Gabor filters can be used to extract the iris features. But there are many shortcomings such as long extraction feature time and high feature dimensions to use the traditional 2-...

متن کامل

Wavelet Packet Based Iris Texture Analysis for Person Authentication

There is considerable rise in the research of iris recognition system over a period of time. Most of the researchers has been focused on the development of new iris pre-processing and recognition algorithms for good quail iris images. In this paper, iris recognition system using Haar wavelet packet is presented. Wavelet Packet Transform (WPT ) which is extension of discrete wavelet transform ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012